Math 323 - Formal Mathematical Reasoning and Writing Problem Session Wednesday, 4/1/15

- 1. Which of the following is equivalent to the statement $x \notin A \cup B$?
 - (a) $x \in A \cap B$
 - (b) $x \notin A$ and $x \notin B$
 - (c) $x \notin A$ or $x \notin B$.
- 2. Which of the following are equivalent to the statement $x \in \bigcap_{i \in I} (A \cup B_i)$?
 - (a) For every $i \in I, x \in A \cup B_i$.
 - (b) Either $x \in A$, or $x \in B_i$ for all $i \in I$.
 - (c) Either $x \in A$ for every $i \in I$, or there exists an i such that $x \in B_i$.
 - (d) For each $i \in I$, either $x \in A$ or $x \in B_i$.
 - (e) For some $i \in I$, x is in both A and B_i .
- 3. True or false.
 - (a) $\{\{\emptyset\}\} \cup \emptyset = \{\emptyset, \{\emptyset\}\}$
 - (b) $\{\{\emptyset\}\} \cup \{\emptyset\} = \{\emptyset, \{\emptyset\}\}$
- 4. ¹ Prove that $\bigcap_{n \in \mathbb{N}} \left(0, \frac{n+1}{n} \right) = (0, 1]$
- 5. Recall that a set S of real numbers is *convex* if the following property holds: If a and b are in S and c is a real number such that a < c < b, then c is also in S.

Here are some preliminary questions to help you think about convex sets (these are the first questions I asked myself to try to get a handle on the definition).

- (a) Is the set with no elements a convex set?
- (b) Can a convex set have exactly one element?
- (c) Can a convex set have exactly two elements?
- (d) Suppose A is a convex set, and $a, b \in A$. What else can I say about A?
- (e) Can you classify convex sets of real numbers in some way? (I mean, could you list different 'types' of convex sets of real numbers?)
- (f) What do you think you should prove about the set A in the problem?

¹Madden §9.2 #9

PT_EX tip of the week!

Here are unions and intersections in ${\rm I\!AT}_{\rm E}\!{\rm X}$:

\$A \cap B\$ \$A \cup B\$	$A \cap B \\ A \cup B$
<pre>\$\bigcap_{i \in I} A_i\$</pre>	$\bigcap_{i\in I} A_i$
<pre>\$\bigcup_{i \in I} A_i\$</pre>	$\bigcup_{i\in I}A_i$
<pre>\$\displaystyle \bigcap_{i \in I} A_i\$</pre>	$\bigcap_{i \in I} A_i$
<pre>\$\displaystyle \bigcup_{i \in I} A_i\$</pre>	$\bigcup_{i\in I}^{i\in I}A_i$

Also, don't forget about **\left** and **\right**:

$$A \setminus (\bigcup_{n \in \mathbb{N}} \frac{1}{n})$$

is not as good as:

 $[A \quad left(\ logcup_{n \in \mathbb{N}} \ right)]$

$$A \setminus \left(\bigcup_{n \in \mathbb{N}} \frac{1}{n}\right)$$